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1. Introduction
The goal of this paper is to continue studying the fundamental operation of summation,
the foundations for what have been laid in the previous one called Analytic Summa�
tion. Now, the main focus will be on extending the concept of summation on the real
numbers with the emphasis on the concept of continuity.

1.1. Recap
In the previous paper, we introduced Δ𝑘, 𝑘 ∈ ℤ:

Definition 1.1.1 :  (Delta)
Δ𝑎𝑛 ≔ 𝑎𝑛+1 − 𝑎𝑛,

Δ2𝑎𝑛 ≔ Δ𝑎𝑛+1 − Δ𝑎𝑛,
…

Δ𝑘𝑎𝑛 ≔ Δ𝑘−1𝑎𝑛+1 − Δ𝑘−1𝑎𝑛,

and showed, that if a sequence (𝐴𝑛)𝑛 ∈ 𝐹ℕ is found such that Δ(𝐴𝑛) = 𝑎𝑛 for some
sequence (𝑎𝑛)𝑛 ∈ 𝐹ℕ, the Theorem 1.1.2 applies:

Theorem 1.1.2 :  (The Fundamental Theorem Of Summation) For all sequences
(𝑎𝑛)𝑛, (𝐴𝑛)𝑛 ∈ 𝐹ℕ : 𝑎𝑛 = Δ(𝐴𝑛), ∀𝑠, 𝑁 ∈ ℕ:

∑
𝑁

𝑛=𝑠
𝑎𝑛 = 𝐴𝑁+1 − 𝐴𝑠

Proof : Previous paper. ∎
In this paper, we are going to extend this idea in order to learn more about the nature
of the very operation of summation.

1.2. Goals
Mathematics is all about generalization. So, let us outline the goals. Namely, we want
to generalize:
• the 𝑘-th delta of any given sequence (𝑘 ∈ ℕ0)
• the operation of summation (extend it to (at least) the real numbers)
• the −1st delta of (almost) any given sequence
And I suppose, that is already a good starting point. At least, the second point turns
out to be really challenging but promising if we succeed. So, let’s get started with the
first one.
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2. Generalizing Delta
The Definition 1.1.1 is pretty clear and obvious, but it is an inductive definition. Let
us generalize it for all 𝑘 ∈ ℕ0.

2.1. One More Tool (which you can ignore for now)
Before we start, we will need one more tool. It is the well-known gamma function Γ :
ℂ → ℂ, 𝑧 ↦ ∫∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡. The most important property that will be used is that it is

an analytic continuation of the factorial. If you are familiar with the gamma function
(which is very likely), then you can skip this part since there is nothing new to you.

Property 2.1.1 : (Gamma and Factorial) ∀𝑛 ∈ ℕ : Γ(𝑛) = (𝑛 − 1)!

Property 2.1.2 :  (Asymptotes of the Gamma Function) Gamma has asymptotes at all
negative integers.

2.2. A New Prospect

From now on, let 𝐹  be a field and (𝐴𝑛)𝑛, (𝛼𝑛)𝑛 ∈ 𝐹ℕ sequences with Δ𝐴𝑛 = 𝛼𝑛

At first, we want to reformulate Definition 1.1.1 the following way:
• 𝑘 = 0: we define Δ0𝛼𝑛 = 𝛼𝑛. It makes sense considering the exponent-like properties

of Δ which have been proven in the previous paper.
• ∀𝑘 ∈ ℕ: we define Δ𝑘𝛼𝑛 = Δ𝑘−1𝛼𝑛+1 − Δ𝑘−1𝛼𝑛.
It is obvious that this it equivalent to what we had in in Definition 1.1.1. Now let us
prove the following statement.

Theorem 2.2.1 :  ∀𝑘 ∈ ℕ : Δ𝑘𝛼𝑛 = ∑𝑘
𝑖=0(

𝑘
𝑖 )(−1)𝑖𝑎𝑛+𝑘−𝑖.

Proof : Tedious induction, I have this written down on paper… It will later be written
here, but it is a kind of Pascals Triangle. Trust me, bro. ∎

Corollary 2.2.2 :  (Generalized Form of the k-th Delta)

Δ𝑘𝛼𝑛 = ∑
𝑘

𝑖=0

Γ(𝑘 + 1)
Γ(𝑖 + 1)Γ(𝑘 − 𝑖 + 1)

(−1)𝑖𝑎𝑛+𝑘−𝑖

Proof :  Follows directly from Theorem 2.2.1 and Property 2.1.1. ∎
So, now we can just plug in whatever value of 𝑘 we need and “immediately” get the
formula for the 𝑘-th delta sequence. Considering Theorem 1.1.2, it is tempting to declare
that we have thus found a tool for determining the exact formula of the anti-delta
sequence for every given (𝑎𝑛)𝑛. Unfortunately, we face a obvious problem, namely, we
would then need to calculate ∑−1

𝑘=0(…) which does not make sense. Yet.

3. Summation Forms
Let us examine the basic properties of the ∑𝑏

𝑛=𝑎 (…)𝑛 notation. For that sake, we take
an arbitrary sequence (𝛼𝑛)𝑛 ∈ 𝐹ℕ and define the following map:

Φ𝛼 : ℕ2
≤ → 𝐹, (𝑎, 𝑏) ↦ ∑

𝑏

𝑘=𝑎
𝛼𝑘,
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where by ℕ2
≤ = {(𝑎, 𝑏) ∈ ℕ × ℕ | 𝑎 ≤ 𝑏}. Indeed, this map is well-defined for all 𝑎, 𝑏 ∈

ℕ : 𝑎 ≤ 𝑏. Now consider the following properties of Φ𝛼:

Property 3.1 :  Let 𝛼 ∈ 𝐹ℕ, Φ𝛼 as defined above. Then we have (for all 𝑎, 𝑏, 𝑐 ∈ ℕ : 𝑎 <
𝑏 ≤ 𝑐)
(i) Φ𝛼(𝑎, 𝑎) = 𝛼𝑎
(ii) Φ𝛼(𝑎, 𝑏 − 1) + Φ𝛼(𝑏, 𝑐) = Φ𝛼(𝑎, 𝑐)
(iii) Φ𝛼(𝑎, 𝑏 − 1) + 𝛼𝑏 = Φ(𝑎, 𝑏)

Proof :  Because of 𝑎 < 𝑏 ≤ 𝑐, we are simply allowed to expand the sum using the
definition of Φ𝛼. ∎
Note that (i) and (ii) imply (iii), but it is an important property, so we will consider it
separately.

Now, as we have outlined some of the fundamental properties of Φ𝛼, we can show
that, in fact, these are not only some properties, but an equivalent definition of Φ𝛼. To
demonstrate that, we will prove the following fact which requires the set of summation
forms to be defined as follows:

Definition 3.2 :  We call 𝑆𝛼 the set of ℕ-summation forms of 𝛼 and define it as follows:
𝑆𝛼 ≔ {Ψ𝛼 : ℕ2

≤ → 𝐹 | ∀𝑎, 𝑏, 𝑐 ∈ ℕ such that 𝑎 < 𝑏 ≤ 𝑐 :
Ψ𝛼(𝑎, 𝑎) = 𝛼𝑎 and Ψ𝛼(𝑎, 𝑏 − 1) + Ψ𝛼(𝑏, 𝑐) = Ψ𝛼(𝑎, 𝑐)}.

Proposition 3.3 :  Let 𝛼 ∈ 𝐹ℕ, Φ𝛼 as defined above. Then Ψ ∈ 𝑆𝛼 ⇒ Ψ = Φ𝛼. In other
words, Φ𝛼 is the only one map with the properties (i)-(iii).

Proof :  Property 3.1 ⟹ Φ𝛼 ∈ 𝑆𝛼 per definition. Now consider an arbitrary function Ψ ∈
𝑆𝛼 and an arbitrary fixed number 𝑎 ∈ ℕ. Then we have Ψ(𝑎, 𝑎) = 𝛼𝑎 = Φ𝛼(𝑎, 𝑎). Now,
we will show ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑎 : Ψ(𝑎, 𝑛) = Φ𝛼(𝑎, 𝑛) by induction. Assume for some 𝑛 ≥
𝑎 that Ψ(𝑎, 𝑛) = Φ𝛼(𝑎, 𝑛). This implies then Ψ(𝑎, 𝑛 + 1) ≝ Ψ(𝑎, 𝑛) + Ψ(𝑛 + 1, 𝑛 + 1) =
Φ𝛼(𝑎, 𝑛) + 𝛼𝑛+1 = Φ𝛼(𝑎, 𝑛 + 1). Thus, we have shown that ∀(𝑎, 𝑏) ∈ ℕ2

≤ : Ψ(𝑎, 𝑏) =
Φ𝛼(𝑎, 𝑏) ⟺ Ψ = Φ𝛼. ∎
Now, we can move on and generalize the idea of summation forms even more.

3.1. Generalized Summation Form
Now, we will temporarily go beyond the discussion of sequences and examine the
properties of a general summation form defined not for a sequence, but for some function
𝑓 ∈ 𝐹𝐹 . Because of 𝐹 𝕀 ≅ 𝐹𝕀, we can further apply what we will have learned about SF
in the general case to the functions defined on a countable (or even finite) set, a.k.a.
sequences.

Definition 3.1.1 :  (Summation Form) Let 𝑓 : 𝐷 → 𝐹  be some function, whereby 𝐷 ⊆
𝐹  is an inductive subset of 𝐹 . We call 𝜎𝑓 : 𝐹 × 𝐹 → 𝐹  a summation form if and only
if, for all 𝑥, 𝑦, 𝑧 ∈ 𝐹 , the following conditions hold:
(i) 𝑥 ∈ 𝐷 ⟹ 𝜎𝑓(𝑥, 𝑥) = 𝑓(𝑥)
(ii) 𝜎𝑓(𝑥, 𝑦 − 1) + 𝜎𝑓(𝑦, 𝑧) = 𝜎𝑓(𝑥, 𝑧).

Now leet us make the following observations:

Proposition 3.1.2 :  (Reverse Sum) For 𝑓 : 𝐷 → 𝐹  and a summation form 𝜎 ≔ 𝜎𝑓
∀𝑥, 𝑦 ∈ 𝐷 : 𝜎(𝑥, 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) − 𝜎(𝑦, 𝑥).

Proof :  With the second property of Definition 3.1.1 we get

3



𝜎(𝑥, 𝑦) + 𝜎(𝑦, 𝑥) = 𝜎(𝑥, 𝑦) + 𝜎(𝑦 + 1, 𝑥) + 𝜎(𝑦, 𝑦) = 𝜎(𝑥, 𝑥) + 𝜎(𝑦, 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).
∎

Corollary 3.1.3 : ∀𝑥 ∈ 𝐹 : 𝜎(𝑥, 𝑥 − 1) = 0

Proof :  By applying Proposition  3.1.2 we get 𝜎(𝑥, 𝑥 − 1) = 𝑓(𝑥) +
𝑓(𝑥 − 1) − 𝜎(𝑥 − 1, 𝑥) = 𝑓(𝑥) + 𝑓(𝑥 − 1) − (𝜎(𝑥 − 1, 𝑥 − 1) + 𝜎(𝑥, 𝑥)) = 𝑓(𝑥) + 𝑓(𝑥 −
1) − (𝑓(𝑥) + 𝑓(𝑥 − 1)) = 0. ∎

Corollary 3.1.4 :  For any function 𝑓 : 𝐷 → ℝ with 𝐷 ⊆ ℝ, a summation form 𝜎 ≔ 𝜎𝑓
and for all (𝑚, 𝑛) ∈ ℤ2

≤ holds

𝜎(𝑛, 𝑚) = 𝑓(𝑚) + 𝑓(𝑛) − ∑
𝑛

𝑘=𝑚
𝑓(𝑘),

which in some sense “means”

" ∑
𝑚

𝑘=𝑛
𝑓(𝑘) = "𝑓(𝑚) + 𝑓(𝑛) − ∑

𝑛

𝑘=𝑚
𝑓(𝑘).

This “backward sum” with the index variable starting at a larger value than the final
index will later be called an imaginary sum.

Now, let me explain how I perceive the concept of imaginary sums. The key to
understanding the (not very obvious) validity of such an object is getting right with
its name. Firstly, it is imaginary as it has pretty much nothing to do with the original
definition of ∑ (which is essentially just a shorthand for writing something like 𝑎𝑚 +
𝑎𝑚+1 + … + 𝑎𝑛). Nonetheless, it is a mathematically valid object, namely the value
of the corresponding summation form to a sequence (which is equivalent to the only
one function with a countable scope of definition). Secondly, the way it is used is very
similar to that of complex, or, if you will, imaginary numbers. The idea of defining a
“number” 𝑖 such that its square is equal to −1 seems also non-related to real numbers
which are, well, “real” and defined the way we would expect them to behave based on
our observations of the universe. A lot of fairly complicated tasks stated using just the
real numbers have very elegant and simple solutions involving use of complex numbers,
and the general scheme looks like this:
1. We start in an already known and well-understood domain which we have a strong

intuition for (e.g. the domain of real numbers, ℝ);
2. Then, we go beyond it to a more generalized object (e.g. ℂ) that in some sense

contains our original domain (and thus the original problem). We do some magic
there, involving use of some extended—imaginary—objects that, being (in some
sense) constrained to the original scope, behave identically, but have some other
nice properties that follow from their definition, allowing us to manipulate with the
already existent objects on a new manner, which helps us solve the problem;

3. In the end, these imaginary objects yield us an answer to the original problem,
“throwing us back” to the real domain.

And what is important, all those transitions between different domains are mathemat-
ically correct because our original domain turns out to simply be a part of that larger,
generalized one (which can either “exist” or be constructed by a mathematician’s
imagination; the point is that it is always a kind of extension or generalization).
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Corollary 3.1.5 :  Let 𝑛 ∈ ℕ, (𝛼𝑛)𝑛 a sequence in 𝐹ℤ (well-defined for all integers),
and 𝜎 ≔ 𝜎𝛼 its summation form. Then we have

" ∑
−𝑛

𝑘=0
= "𝜎(0, −𝑛) = − ∑

𝑛−1

𝑘=1
𝛼−𝑘.

Proof :  Applying Corollary 3.1.4, we get

𝜎(0, −𝑛) = 𝛼0 + 𝛼−𝑛 − ∑
0

𝑘=−𝑛
𝛼𝑘 = 𝛼0 + 𝛼−𝑛 − ∑

𝑛

𝑘=0
𝛼−𝑘 = − ∑

𝑛−1

𝑘=1
𝛼−𝑘.

∎

4. Putting the Puzzle Together
Now, lets get back to the original goal: trying to generalize the process of determining
a closed-form formula for calculating the sum of consecutive terms of a given sequence
(𝛼𝑛)𝑛. Up to this point, we know three non-related things:
(i) Theorem 1.1.2 gives us a clue about how this formula should look like and behave,

namely, it has to define an antiderivative sequence, or the Δ−1𝛼𝑛.
(ii) Corollary 2.2.2 tells us how to “produce” the formulas for Δ𝑘𝛼𝑛 for any given 𝑘 ∈

ℕ0. Trying to extend it to negative integers fails because this would require us to
somehow “calculate” ∑−𝑛

𝑘=0 (…)𝑛 for 𝑛 ∈ ℕ, which does not make any sense.
(iii) Corollary 3.1.5 allows us to make sense of such expressions by extending the

regular sum ∑𝑏
𝑘=𝑎 𝛼𝑘 to the corresponding summation form 𝜎𝛼(𝑎, 𝑏), which takes

the same values as the sum for all (𝑎, 𝑏) ∈ ℕ2
≤ and is uniquely defined on all integers

preserving the properties of the regular sum.
So, why not to try to combine these three facts in order to obtain a general prescription
to constructing an anti-delta sequence?

4.1. Idea
Beforehand, we simplify the expression in Corollary 2.2.2 by defining

𝛾𝛼
𝑘,𝑖,𝑛 ≔ Γ(𝑘 + 1)

Γ(𝑖 + 1)Γ(𝑘 − 𝑖 + 1)
(−1)𝑖𝛼𝑛+𝑘−𝑖,

which gives us a shorter version of that formula:

Δ𝑘𝛼𝑛 = ∑
𝑘

𝑖=0
𝛾𝛼

𝑘,𝑖,𝑛.

We extend it to all integers by replacing ∑ with 𝜎𝛾 ≔ 𝜎(𝛾𝛼
𝑘,𝑖,𝑛)

𝑖
:

Δ𝑘𝛼𝑛 = 𝜎𝛾(0, 𝑘).
So, we take Corollary 2.2.2, set 𝑘 = −1, and get…

Δ−1𝛼𝑛 = 𝜎𝛾(0, −1) = 0.
Oh, apparently, something strange is going on there. But it is actually not. It is simply
how we defined it. But what if, at first, we try to obtain Δ−2 (with respect to 𝑛, which
we denote as Δ𝑛) and then take the delta of that? This should be legit. Let us try to
do this.

Δ−1
𝑛 𝛼𝑛 = Δ𝑛(Δ−2

𝑛 𝛼𝑛) = Δ𝑛(𝜎𝛾(0, −2))
Now, we apply Corollary 3.1.5 and get
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Δ𝑛(−𝜎𝛾(0, −2)) = Δ𝑛(−𝛾𝛼
𝑘,𝑖,𝑛) = Δ𝑛(− Γ(𝑘 + 1)

Γ(𝑖 + 1)Γ(𝑘 − 𝑖 + 1)
(−1)𝑖𝛼𝑛+𝑘−𝑖) =

= Γ(𝑘 + 1)
Γ(𝑖 + 1)Γ(𝑘 − 𝑖 + 1)

(−1)𝑖+1(𝛼(𝑛+1)+𝑘−𝑖 − 𝛼𝑛+𝑘−𝑖) for 𝑘 = −2, 𝑖 = −1.

But here comes the problem: Γ has asymptotes in non-positive integers (see
Property 2.1.2 if you are not familiar with Γ). Ideally, we should be able to set 𝑘 =
−2, 𝑖 = −1 to the formula above and get

Δ−1𝛼𝑛 = Γ(−1)
Γ(0)Γ(0)

(𝛼𝑛 − 𝛼𝑛−1).

But this tiny little Γ(−1)
Γ(0)Γ(0)  makes it, at the first glance, impossible, because it is

simply not defined. We could try to define some 𝑔(𝑥) ≔ Γ(𝑥−1)
Γ(𝑥)Γ(𝑥)  and consider the limit

lim𝑥→0 𝑔(𝑥), but it is actually equal to zero: prove and reference this property.
What you will see from now on up until the end of this section is mathematical

nonsense. But we will formalize this later. I just want to give you a clue about the
motivation of doing all of this.

Let’s for a moment forget about what the expression Γ(−1)
Γ(0)Γ(0)  really means and

consider it being some object 𝔾, maybe a sequence (𝔾𝑛)𝑛, maybe not. But suppose the
formula above makes sense. What would it mean?

𝛼𝑛 = Δ𝑛(Δ−1
𝑛 𝛼𝑛) = Δ𝑛(𝔾(𝛼𝑛 − 𝛼𝑛−1)) = 𝔾(𝛼𝑛+1 − 2𝛼𝑛 + 𝛼(𝑛 − 1))   " ⟺ "

" ⟺ "    𝔾 = 𝛼𝑛
𝛼𝑛+1 − 2𝛼𝑛 + 𝛼𝑛−1

.

That “means” that if 𝔾 is actually a constant (which occurs sometimes, e. g. for 𝛼𝑛 =
𝑏𝑛 for some 𝑏 ∈ ℝ>0 or 𝛼𝑛 = sin(𝑛)), we can define

𝔾𝑛 : 𝐹𝐼 → 𝐹, 𝛼𝑛 ↦ 𝛼𝑛
𝛼𝑛+1 − 2𝛼𝑛 + 𝛼𝑛−1

(∀𝑛 ∈ 𝐼)

So, if for some 𝛼𝑛 ∃𝐺 ∈ 𝐹 : ∀𝑛 ∈ 𝐼 holds 𝔾𝑛(𝛼) = 𝐺, then
𝐴𝑛 ≔ Δ−1

𝑛 𝛼𝑛 = 𝐺(𝛼𝑛 − 𝛼𝑛−1).
By applying the FTS (Theorem 1.1.2) we get for (𝑠, 𝑁) ∈ ℕ2

≤ :

∑
𝑁

𝑘=𝑠
𝛼𝑛 = 𝐴𝑛+1 − 𝐴𝑠 = 𝐺(𝛼𝑛+1 − 𝛼(𝑛) − 𝛼(𝑠) + 𝛼(𝑠 − 1)).

It looks familiar, doesn’t it? This is exactly the Cherry-on-Top Theorem from the
previous paper. Not actually proven, but in some sense “derived”! And this is exactly
how I came to this, and only then properly proved is (as you have seen in the previous
paper).
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