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Abstract

We prove a formula for the N-th harmonic number Hy = Zf:; ) % and generalize this

approach so it can be applied to other sequences.

1 Introduction

1.1 Notations

(i) N is the set of the natural numbers {1, 2, ..}
(ii) Ny :=NU{0}, N_:={-—n:neN}

(i) A = A, is the forward difference operator, i.e. Aa, :=a, . ; —a,.

1.2 Overview of the Result

N o1
n=1n"

We prove this small neat formula for the N-th harmonic number Hy = > For that sake,

we define the auxiliary function
I'(z+ 1)I'(n)

f:NxR\(N_) =R, f(n,z) ::COS(W'Z)F(n—i—z—i—l)'

(1)

1

This function analytically continues the forward difference operator applied to the sequence -

in the difference order k, because, for k € Ny, we have Ak(%) = f(n, k).
Theorem 1.2.1. Hy = Eiv:l L=lim,, [f(N+1,2)— f(1,2)].

The formula will be proven using the following result:

Lemma 1.2.2. Assume g: N x R\ (N_) — R is a function s.t.

(i) z+> g(n, z) is continuous on (—1,00) UU, where U is a deleted neighborhood of —1, for
alln € N,

(i) g(n+1,2) —g(n,z) = g(n,z+1) foralln e N,z e R\ (N_),

(iii) lim,_, ,[g(n,z) — g(m, 2)] exists for all n,m € N.

Then 32 g(n,0) =lim, , ;[g(n+1,2) — g(1,2)]
Proof. Take a z € U. Then

N N
> gz =Y lgln+ Lz —1) —glnz— 1] =g(N+1,2- 1) —g(L,z=1).  (2)
n=1 n=1

Using continuity of z — g(n, z) and taking the limit as z — 0 yields the claim. O



2 Proof of Theorem 1.2.1

Consider AO( ) w 1
2 (5= =—ﬁ
(%) - (n+1)( n+2) (_n(nl-i— 1)) - n(n+12)(n+2) (3)
<%> - (n6+ 2)(n + 3)

1 —1)!
— Ak (ﬁ) — (_1)’%! En m k;' follows inductively.

Immediately, it is neither possible to set k = —1 to get a primitive sequence nor to take the
limit lim,_,_; A®(1). The first step is to obtain a continuous version of the identity above using

I'(n) = (n—1)! for n € N and (—1)* = cos(nk), k € Z, (4)

which motivates the definition of f in (1). Using (3) and (4), we get
1
Ak(—> = f(n,k) forne NJk=0,1,2,... (5)
n

Thus it remains to show that f satisfies (ii) and (iii) to apply Lemma 1.2.2.
Lemma 2.1. f(n+1,2) — f(n,2) = f(n,z+1) foralln e Nz e R\ (N_).
Proof. Using the functional equation (4) twice

I'z+2)=(z+1)I(z+1), Tn+2+2)=(n+2z+1)I'(n+2+1),

we obtain

fn+1,2) — f(n,z) =cos(wz)I'(z+ 1) (F(Ez(ii—lk)Z) — F(nr—‘k(z)—i- 1))

I'(z+2) (I‘(n)n —T(n)(n+z2+ 1))
z+1 I'(n+ (z+1)+1)

= —cos(mz)I'(z + 2) L(n)

—_— Fn+(z4+1)+1)
cos(m(z+1))

= cos(7z)

= f(n,z+1).

Lemma 2.2. The limit in Theorem 1.2.1 exists for all N € N.

Proof. Take any n € N. Then, using Lemma 2.1
['(z+2)['(n)
I'(n+2z+2)
I'(z+2)I'(n) 6
I'n+z+1)(n+2+1) (6)

fn+1,2)— f(n,z) = f(n,z+ 1) = cos(m(z + 1))

=cos(m(z+1))
1 1

- —————=—for z = —1.
n o n

The rest follows inductively with the telescope sum argument. O
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