
Constructing a good C-path
Daniil Demidov, Maximilian Wittmer

13.11.2024

Abstract
We define the concept of a special subset of vertices of an undirected graph
called a clique and set the rules for when one can“jump” from one clique to
another. Such a pair is called a move. An (ordered) sequence of cliques, such
that every pair of adjacent cliques form a move, is called a good path if it
satisfies specific properties that we define later. The goal is to establish when

a good path is exists and, if so, how to construct it.

1. Introduction
There will be a detailed motivation as I finish digging through the required chapters
of WPiG

Since we work with graphs, we need to outline a convention we will use throughout
this document.

Convention 1.1 : Let Γ = (𝑉 , 𝐸) be an undirected graph with
𝑉 being the (finite) set of vertices, and 𝐸 ⊂ 𝒫(𝑉) being the set of edges with ∀𝑒 ∈
𝐸, 𝑒 = {𝑥, 𝑦} for some 𝑥, 𝑦 ∈ 𝑉 .

Definition 1.2 : (Link) For some 𝑣 ∈ 𝑉 , we call 𝑙𝑘Γ(𝑣) ≔ {𝑣} ∪ {𝑢 ∈ 𝑉 | {𝑣, 𝑢} ∈ 𝐸}
the link of 𝑣.

1.1. Joins
We need to define a specific type of graph that will be studied later.

Definition 1.1.1 : (Join Decomposition) We call a tuple (𝐿, 𝑂) with 𝐿, 𝑂 ⊆ 𝑉 a join
decomposition, if the following conditions are satisfied:
(i) 𝑉 = 𝐿 ⊔ 𝑂
(ii) ∀𝑙 ∈ 𝐿, ∀𝑜 ∈ 𝑂 : {𝑙, 𝑜} ∈ 𝐸.

Definition 1.1.2 : (Join Graph) If, for a graph Γ, there exists a join decomposition,
then we call Γ a join.

1.2. Cliques
Now, we define the already mentioned concept of special subsets of 𝑉 .

Definition 1.2.1 : (Clique) A subset 𝛼 ⊂ 𝑉 is called a clique if ∀𝑥, 𝑦 ∈ 𝛼, {𝑥, 𝑦} ∈ 𝐸.

1

Notation 1.2.2 : (Set of All Cliques) For a graph Γ, we denote the set of all cliques
as 𝒞(Γ) ≔ {𝛼 ∈ 𝒫(𝑉) | ∀𝑥, 𝑦 ∈ 𝛼, {𝑥, 𝑦} ∈ 𝐸}.

Notation 1.2.3 : (Set of All Moves)

ℳ(Γ) ≔ {(𝛼, 𝛽) ∈ 𝒞(Γ)2 | (𝛽 \ 𝛼) ∩ (⋂
𝑣∈𝛼

𝑙𝑘Γ(𝑣)) = ∅}. (1)

If 𝑚 ∈ ℳ(Γ), we call 𝑚 a move.

Remark 1.2.4 : ∀𝛼 ∈ 𝒞(Γ), (𝛼, 𝛼) ∈ ℳ(Γ).

Definition 1.2.5 : (Maximal Clique) A clique 𝛼 ∈ 𝒞(Γ) is called maximal, if ∀𝛽 ∈
𝒞(Γ) holds

(𝛼, 𝛽) ∈ ℳ(Γ) ⟹ |𝛽| ≤ |𝛼|.

1.3. Paths

Definition 1.3.1 : (C-path) A sequence of cliques (𝜔𝑛)𝑛∈ℕ is called a c-path (cliques
path), if (𝜔𝑛+1, 𝜔𝑛) ∈ ℳ(Γ) holds for all 𝑛 ∈ ℕ.

At first, it might seem counterintuitive to define a c-path in a reverse order. But
it is motivated by the goal of finding an algorithm for constructing such a path, which
will be done top-to-bottom.

Remark 1.3.2 : The definition of a c-path requires it to be an infinite sequence of
cliques which would not translate to any real world application. So, at first glance,
it seems impossible to have a finite path of cliques expressed as a c-path. But this
problem can easily be solved by setting 𝜔𝑛 ≔ 𝛼 for all 𝑛 ∈ ℕ, 𝑛 ≥ 𝑚, whereby 𝑚 ∈ ℕ
is the length of the path and 𝛼 is the starting clique. Indeed, it satisfies the definition
of a c-path because of Remark 1.2.4.

Definition 1.3.3 : (A good c-path) A c-path 𝜔 is called good if
(i) 𝜔1 is maximal
(ii) ∃𝑀 ∈ ℕ : |𝜔𝑀 | = 1.

Definition 1.3.4 : (A good vertex) 𝑣 ∈ 𝑉 is called a good vertex if there exists a good
c-path 𝜔, such that 𝜔𝑀 = {𝑣} for some 𝑀 ∈ ℕ.

1.4. Goal
The goal is to prove the following theorem:

Theorem 1.4.1 : A graph Γ is a join ⟺ no vertex of Γ is good.

Proof :
• “⟹” has been shown in our previous paper. Write it down anyway!
• “⟸” Is equivalent to Lemma 1.4.2.

∎

Lemma 1.4.2 : A graph Γ is not a join ⟹ there is a good vertex.

2

The rest of this paper is dedicated to proving Lemma 1.4.2. We will do is constructively
by describing an algorithm for finding a c-path to an arbitrary maximal clique and
proving that it is good.

2. Algorithms

2.1. Finding a Join Decomposition
The first goal is to determine whether a given graph Γ is a join or not.

Construction 2.1.1 : (Finding a Join Decomposition) The goal is to construct two
sequences 𝐿𝑛, 𝑂𝑛 ∈ 𝒫(𝑉), such that ∀𝑛 ∈ ℕ0

𝐿𝑛 ∩ 𝑂𝑛 = ∅ (2)
𝐿𝑛 ∪ 𝑂𝑛 = 𝑉 (3)

We start by choosing an arbitrary vertex 𝑣 ∈ 𝑉 . We set 𝐿0 ≔ {𝑣}, 𝑂0 ≔ 𝑉 \ {𝑣}. Thus,
both (2) and (3) are satisfied. For 𝑛 ∈ ℕ, we define

𝐿𝑛 = 𝐿𝑛−1 ∪ {𝑜 ∈ 𝑂𝑛−1 | ∃𝑙 ∈ 𝐿𝑛−1, {𝑙, 𝑜} ∉ 𝐸} (4)
𝑂𝑛 = 𝑉 \ 𝐿𝑛. (5)

(5) ⇒ (2). Inductively, (3) also applies.
However, the algorithm must terminate. To determine when the recursion has to

be stopped, we introduce Δ𝐿𝑛 ≔ 𝐿𝑛+1 \ 𝐿𝑛 for all 𝑛 ∈ ℕ0. If Δ𝐿𝑠 = ∅ for some 𝑠 ∈ ℕ0,
then we have 𝐿𝑠+1 = 𝐿𝑠. That means that either 𝑂𝑠 = ∅ or 𝑂 ≠ ∅ (then, (4) would imply
that ∀𝑜 ∈ 𝑂𝑠, ∀𝑙 ∈ 𝐿𝑠 : {𝑙, 𝑜} ∈ 𝐸). Both cases imply that ∀𝑛 ≥ 𝑠 : Δ𝐿𝑛 = ∅. That is
why it makes sense to stop the recursion as soon as Δ𝐿𝑛 = ∅. The recursion depth
is represented by 𝐽Γ(𝑣) ≔ min{𝑠 ∈ ℕ0 | Δ𝐿𝑛 = ∅ wenn 𝐿0 = {𝑣}}. Proposition 2.1.2
shows that 𝐽Γ(𝑣) always exists.

Proposition 2.1.2 : ∀𝑣 ∈ 𝑉 , ∃𝑠 ∈ ℕ : 𝑠 = 𝐽Γ(𝑣).

Proof : By construction, 𝑠 exists ⟺ Δ𝐿𝑛 = ∅ for some 𝑛 ∈ ℕ. Suppose that, for some
starting vertex 𝑣 ∈ Γ, Δ𝐿𝑛 ≠ ∅ for all 𝑛 ∈ ℕ. That would imply |𝐿𝑛+1| > |𝐿𝑛| for all
𝑛 ∈ ℕ. This contradicts |𝑉 | < ∞ since ∀𝑛 ∈ ℕ, 𝐿𝑛 ⊆ 𝑉 . Thus, the assumption that such
vertex 𝑣 ∈ 𝑉 exists, that 𝐽Γ(𝑣) ∉ ℕ, is false. ∎

Now, the goal is to show that (𝐿𝑠, 𝑂𝑠) is indeed a join decomposition of Γ.

Proposition 2.1.3 : Γ is a join ⟺ the algorithm described in Construction 2.1.1
terminates with 𝑂𝑠 ≠ ∅ for all 𝑣 ∈ 𝑉 , whereby 𝑠 = 𝐽Γ(𝑣).

Proof : “⟸”: Suppose that ∀𝑣 ∈ 𝑉 , 𝑂𝑠 ≠ ∅, whereby 𝑠 = 𝐽Γ(𝑣). According to
Construction 2.1.1, we have ∅ ≠ 𝐿𝑠 ⊊ 𝑉 , such that 𝐿𝑠 ∩ 𝑂𝑠 = ∅ and ∀𝑜 ∈ 𝑂𝑠, ∀𝑙 ∈ 𝐿𝑠 :
{𝑙, 𝑜} ∈ 𝐸. By definition, Γ is a join.

“⟹”: Let Γ be a join graph. There could be different join decompositions (𝐿, 𝑂) of
this graph. As a reminder, a join decomposition of a graph is a tuple (𝐿, 𝑂) ∈ 𝒫(𝑉)2,
such that

𝐿 ∩ 𝑂 = ∅ , 𝐿 ∪ 𝑂 = 𝑉 and ∀𝑜 ∈ 𝑂, ∀𝑙 ∈ 𝐿 : {𝑙, 𝑜} ∈ 𝐸. (6)
Now, let us choose an arbitrary vertex 𝑣 ∈ 𝑉 . Then, there exists a join decomposition
(𝐿, 𝑂) ∈ 𝒫(𝑉)2 such that 𝑣 ∈ 𝐿. Join decomposition is not unambiguous, so we choose
(wlog) such a decomposition that |𝐿| is minimal across all possible decomposition. Now

3

we let the algorithm Construction 2.1.1 run with 𝐿0 = {𝑣}. By induction we show that
𝑂 ⊆ 𝑂𝑛 and 𝐿𝑛 ⊆ 𝐿 for all 𝑛 ∈ ℕ0.

Clearly, we have 𝑂 ⊆ 𝑂0, as well as 𝐿0 ⊆ 𝐿. Now we assume that 𝑂 ⊆ 𝑂𝑛 and 𝐿𝑛 ⊆
𝐿 for some 𝑛 ∈ ℕ. By construction, ∀𝑜 ∈ 𝑂𝑛+1, ∀𝑙 ∈ 𝐿𝑛 : {𝑙, 𝑜} ∈ 𝐸, therefore the as-
sumption 𝐿𝑛 ⊆ 𝐿 implies 𝑂 ⊆ 𝑂𝑛+1. By construction, 𝐿𝑛+1 ∩ 𝑂𝑛+1 = ∅. By definition,
𝐿 ∩ 𝑂 = ∅. Thus, ∀𝑙 ∈ 𝐿𝑛+1 : 𝑙 ∉ 𝑂𝑛+1 ⟹ 𝑙 ∉ 𝑂 ⟺ 𝑙 ∈ 𝐿, which means 𝐿𝑛+1 ⊆ 𝐿.

Obviously, ∀𝑛 < 𝑠 = 𝐽Γ(𝑣), Δ𝐿𝑛+1 ≠ ∅ ⟹ |𝐿𝑛| < |𝐿𝑛+1| ≤ |𝐿| as well as |𝑂| ≥
|𝑂𝑛| > |𝑂𝑛+1|. Proposition 2.1.2 shows, that the algorithm halts after 𝑠 = 𝐽Γ(𝑣))
steps. Hence, |𝐿𝑠| ≤ |𝐿| < |𝑉 | ⟹ 𝐿𝑠 ≠ 𝑉 ⟹ 𝑂𝑠 ≠ ∅. That means that ∀𝑙 ∈ 𝐿𝑠, ∀𝑜 ∈
𝑂𝑠, {𝑙, 𝑜} ∈ 𝐸 ⟹ 𝐿𝑠 = 𝐿 sowie 𝑂𝑠 = 𝑂. ∎

2.2. Adjacency Table
Now, we introduce one last construction that will be used to prove Lemma 1.4.2.

Construction 2.2.1 : (Adjacency Table) Let 𝑇Γ(𝑣) be a tuple of (𝑠 + 1) subsets of 𝑉 ,
whereby 𝑠 = 𝐽Γ(𝑣) and

(𝑇Γ(𝑣))𝑖 ≔ Δ𝐿𝑖−1 = 𝐿𝑖 \ 𝐿𝑖−1 for 𝑖 ∈ {1, …, 𝑠} and (𝑇Γ(𝑣))0 ≔ {𝑣} (7)
.

We call 𝑇Γ(𝑣) the adjacency table of 𝑣 (over Γ).

Example 2.2.2 : Let Γ = ({1, 2, …, 10}, 𝐸). Then, the adjacency table might look
something like

(𝑇Γ(1))0 (𝑇Γ(1))1 (𝑇Γ(1))2 (𝑇Γ(1))3 (𝑇Γ(1))4
1 3 7 4 2 8 6 9 5 10

Convention 2.2.3 : From now on, let Γ = (𝑉 , 𝐸) be a non-join graph, 𝑞 an arbitrary,
but fixed vertex of Γ (as in Construction 2.1.1). Let 𝑠 = 𝐽Γ(𝑞) ∈ ℕ be the number of
steps which the algorithm (Construction 2.1.1) terminates after with 𝐿𝑠 = 𝑉 , 𝑂𝑠 =
∅. Let 𝑇 ≔ 𝑇Γ(𝑞) be the adjacency table of this vertex.

Let 𝐼 ≔ {1, …, 𝑠} and 𝐼0 = 𝐼 ∪ {0} be the index sets for the adjacency table 𝑇 .

Now, let’s make the following observation:

Lemma 2.2.4 : ∀𝑖, 𝑗 ∈ 𝐼0 : 𝑖 ≠ 𝑗 ⇒ 𝑇𝑖 ∩ 𝑇𝑗 = ∅.

Proof : Without loss of generality, we assume 𝑖 > 𝑗. By construction, we have then 𝑇𝑗 ⊆
𝐿𝑖−1 and 𝑇𝑖 = Δ𝐿𝑖−1 = {𝑜 ∈ 𝑂𝑖−1 | ∃𝑙 ∈ 𝐿𝑖−1 : {𝑙, 𝑜} ∉ 𝐸} ⊆ 𝑂𝑖−1. Because of 𝐿𝑖−1 ∩
𝑂𝑖−1 = ∅ we obtain 𝑇𝑖 ∩ 𝑇𝑗 = ∅. ∎

Lemma 2.2.5 : For each adjacency table, the following holds:
∀𝑖 ∈ 𝐼 : ∀𝑤 ∈ 𝑇𝑖 ∃𝑣 ∈ 𝑇𝑖−1 : {𝑣, 𝑤} ∉ 𝐸 (8)

and
∀𝑖, 𝑗 ∈ 𝐼0 : |𝑖 − 𝑗| > 1 ⟹ ∀𝑣 ∈ 𝑇𝑖, 𝑤 ∈ 𝑇𝑗 : {𝑣, 𝑤} ∈ 𝐸. (9)

Proof : (8) follows directly from Construction 2.1.1 and Construction 2.2.1. ∎

Proof : (9): We assume that ∃𝑖, 𝑗 ∈ 𝐼0 with |𝑖 − 𝑗| > 1, such that ∃𝑣 ∈ 𝑇𝑖, 𝑤 ∈
𝑇𝑗 : {𝑣, 𝑤} ∉ 𝐸. Without loss of generality, let 𝑖 > 𝑗. Lemma 2.2.4 implies 𝑣 ≠ 𝑤

4

and 𝑇𝑖 ∩ 𝑇𝑗 = ∅ as well as 𝑇𝑗 ∩ 𝑇𝑗+1 = ∅. 𝑤 ∈ 𝑇𝑗 = Δ𝐿𝑗−1 ⇒ by Construction 2.1.1,
𝑤 ∈ 𝐿𝑗. We know that 𝑇𝑗+1 = Δ𝐿𝑗 = {𝑜 ∈ 𝑂𝑗 | ∃𝑙 ∈ 𝐿𝑗 : {𝑙, 𝑜} ∉ 𝐸}. 𝑣 ∈ 𝑇𝑖 and 𝑖 >
𝑗 imply ∀𝑘 ≤ 𝑗 < 𝑖, 𝑣 ∉ 𝑇𝑘, which means that 𝑣 ∈ 𝑂𝑗 ⟹ 𝑣 ∈ Δ𝐿𝑗 = 𝑇𝑗+1 ⟹ 𝑇𝑖 =
𝑇𝑗+1 ⟹ 𝑗 + 1 = 𝑖. That contradicts |𝑖 − 𝑗| > 1, thus, the assumption that such 𝑣 and 𝑤
exist is false. That completes the proof of (9). ∎

3. Construction of a Good C-path
Now our goal is to take advantage of the adjacency table defined above and its proper-
ties. For readability, we call the entries of the adjacency table 𝑇𝑖 cells. The direction
“left to right” corresponds to the direction “0 to 𝑠”.

Notation 3.1 : (Selection) We set Ω𝑖
𝑛 = 𝜔𝑛 ∩ 𝑇𝑖 and call Ω𝑖

𝑛 the selection from the
cell 𝑇𝑖 in step 𝑛.

3.1. Zebras are good!

Definition 3.1.1 : (Zebra) We call 𝛼 ∈ 𝒞(Γ) a zebra, if the following conditions are
met:
(i) ∀𝑘 ∈ 𝐼, 𝑘 ≤ 𝑠

2 : 𝛼 ∩ 𝑇2𝑘+1 = ∅
(ii) ∃𝑚 ∈ 𝐼 : ∀𝑘 ∈ 𝐼, 𝑘 ≤ 𝑚 : |𝛼 ∩ 𝑇2𝑘| = 1 and ∀𝑘 ∈ 𝐼, 𝑘 > 𝑚 : |𝛼 ∩ 𝑇2𝑘| = 0.
We call 𝑚 the zebra index of 𝛼.

Remark 3.1.2 : Lemma 2.2.5 applies that zebras exist. Should I explain this in more
detail?

Example 3.1.3 : 𝛼 = {𝑞, 𝑑, 𝑔} is a zebra.
𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

q a b c d e f g h

Definition 3.1.4 : A zebra with zebra index 𝑚 = ⌈𝑠+1
2 ⌉ is called a maximal zebra of

𝑞. 𝛼 from Example 3.1.3 is a maximal zebra of 𝑞.

Remark 3.1.5 : Each vertex has at least one maximal zebra because it is constructed
using a deterministic algorithm described in Construction 2.1.1.

Definition 3.1.6 : (Reducibility) A clique 𝛼 ∈ 𝒞(Γ) is called reducible, if a c-path
(𝜔𝑛)𝑛 exists, such that ∃𝑀, 𝑁 ∈ ℕ, 𝑀 > 𝑁, with 𝜔𝑁 = 𝛼 and |𝜔𝑀 | < |𝜔𝑁 |.

Proposition 3.1.7 : If 𝛼 ∈ 𝒞(Γ) is a zebra, then 𝛼 is reducible in 2 steps.

Proof : We will construct a c-path (𝜔𝑛)𝑛 with 𝜔1 = 𝛼 and 𝜔3 = 𝛼 \ 𝑇2𝑚, whereby 𝑚
is the zebra index of 𝛼. Thus, we only have to define 𝜔2. Further, let Ω𝑖

𝑛 denote the
selection (Notation 3.1) with respect to 𝜔. By Definition 3.1.1, we have ∀𝑘 ≤ 𝑚 : |Ω2k

𝑛 | =
1, and for all other 𝑖 ∉ {2𝑘 | 𝑘 ∈ ℕ and 0 ≤ 𝑘 ≤ 𝑚} |Ω𝑖

𝑛| = 0, namely, every index 0 ≤
𝑘 ≤ 𝑚 corresponds to exactly one unique 𝑣𝑘 with Ω2k

𝑛 = {𝑣𝑘}. By Lemma 2.2.5, ∀𝑘 ∈
{1, …, 𝑚}, ∃𝑢𝑘 ∈ 𝑇2𝑘−1 : {𝑣𝑘, 𝑢𝑘} ∉ 𝐸. For each 𝑣𝑘 we pick such 𝑢𝑘 and define 𝜔2 ≔
{𝑢𝑘 | 0 < 𝑘 ≤ 𝑚}. But we do not know yet if {𝑢2, 𝑞} ∉ 𝐸, because then and only then

5

will (𝜔1, 𝜔2) be a move. It turns out to always be the case, since 𝑇0 = {𝑞} by construction
and all 𝑥 ∈ 𝑇1 (in particular, 𝑢1) satisfy {𝑞, 𝑥} ∉ 𝐸. By construction, 𝜔1 ∩ 𝜔2 = ∅. That
implies

𝜔1 ∩ (⋂
𝑣∈𝜔2

𝑙𝑘Γ(𝑣)) = ∅ ⟹ (𝜔2, 𝜔1) ∈ ℳ(Γ). (10)

𝜔3 is defined similarly, namely, for every 𝑢𝑘 ∈ 𝑇2𝑘−1(0 < 𝑘 ≤ 𝑚), we pick a vertex 𝑤𝑘 ∈
𝑇2𝑘−2 such that {𝑤𝑘, 𝑢𝑘} ∉ 𝐸. In particular, 𝑤1 ∈ 𝛼 ∩ 𝑇0 = {𝑞}, which ultimately means
𝑤1 = 𝑞, and 𝑢1 ∈ 𝑇1 implies {𝑤1, 𝑢1} ∉ 𝐸. Therefore, every vertex 𝑥 ∈ 𝜔3 corresponds
to exactly one other vertex 𝑦 ∈ 𝜔2, such that {𝑥, 𝑦} ∉ 𝐸. Thus, (𝜔3, 𝜔2) is also a move.
∎

Corollary 3.1.8 : Let 𝛼 ∈ 𝒞(Γ) be a zebra. Then, there exists a path (𝜔𝑛)𝑛 with 𝜔1 =
𝛼, 𝜔𝑀 = 𝛼 ∩ 𝑇0 = {𝑞}, whereby 𝑀 = 2(|𝛼| − 1). In particular, 𝜔 is a good c-path.

Proof : If |𝜔1| = 1, then there is nothing to show. Otherwise let 𝜔1 = 𝛼. Then define
𝜔2 and 𝜔3 as in Proposition 3.1.7. This implies |𝜔3| = |𝜔1| − 1. Thus, 𝜔3 is another
zebra, therefore Proposition 3.1.7 is applicable to 𝜔3 if |𝜔3| > 1. After repeating this
|𝛼| − 1 times, whereby size of the current clique is reduced by 1 every other step, you
get |𝜔2(|𝛼| −1)| = 1. By Definition 1.3.3, 𝜔 is good. ∎

Example 3.1.9 : Going back to the example table that we used earlier to illustrate
zebras, let us demonstrate how such a c-path would look like. Suppose we have a c-path
𝜔 with 𝜔𝑧 = {𝑞, 𝑑, 𝑔} being a zebra for some 𝑧 ∈ ℕ.

𝑛 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

z q a b c d e f g h
z + 1 q a b c d e f g h
z + 2 q a b c d e f g h
z + 3 q a b c d e f g h
z + 4 q a b c d e f g h

Note that even at the step 𝑧 + 3 we already have found a good vertex. But our goal is
to show that every vertex is good. For that purpose, we chose one arbitrary vertex 𝑞
as the starting vertex for our algorithm and show that we can construct a good c-path
from it to a maximal clique.

3.2. Putting the Pieces Together
Now, we have an algorithm that solves the problem if we start with a zebra. But not
every maximal clique is a zebra. Example? On the other hand, every zebra is a subset
of some maximal clique. Thus, in order to show that our arbitrarily chosen vertex 𝑞
leads to a maximal clique (which is our goal), we need to be able to construct a c-path
from a maximal clique to 𝑞. The easiest way is to choose some maximal clique that has
one of the maximal zebras of 𝑞 as a subset, then construct a c-path from that maximal
clique to zebra, after which we complete this c-path using Corollary 3.1.8.

The idea is that we identify cells that do not meet the definition of a zebra
(Definition 3.1.1), calling them problems, and provide a systematic approach for resolv-
ing them. By resolving, I mean constructing a c-path such that the amount of these

6

problems or the “size” of one of them gets smaller after each step. In order to be able
to work out the solution, we need to define what we mean by the size of a problem.

Convention 3.2.1 : Let 𝜔1 be some maximal clique, such that there exists a subset
𝜁 ⊆ 𝜔1, such that 𝜁 is a maximal zebra of 𝑞. By Corollary 3.1.8, there exists a c-path
from 𝜁 to 𝑞.

Definition 3.2.2 : (Problem Size) For every clique 𝜔𝑛, we associate each cell of the
adjacency table with a number called cell problem size ℙ𝑖

𝑛 defined the following way:

ℙ𝑖
𝑛 ≔ {|Ω𝑖

𝑛| − 1 if 𝑖 is even
|Ω𝑖

𝑛| if 𝑖 is odd (11)

The number ℙ𝑛 ≔ ∑𝑠
𝑖=0 ℙ𝑖

𝑛 is called the (global) problem size at step 𝑛.

Remark 3.2.3 : ℙ𝑖
𝑛 ≥ 0 since we chose 𝜔1 to contain a maximal zebra of 𝑞.

Remark 3.2.4 : ℙ𝑛 = 0 ⟺ 𝜔𝑛 is a zebra. So, in some sense, ℙ𝑛 represents how “far”
𝜔𝑛 is from being a zebra.

Notation 3.2.5 : For 𝑖 ∈ 𝐼 \ {𝑠} we write ℰ𝑖
𝑛 ≔ Ω𝑖−1

𝑛 ∪ Ω𝑖
𝑛 ∪ Ω𝑖+1

𝑛 .

Construction 3.2.6 : We start with 𝜔1 as in Convention 3.2.1. Our goal is to construct
a valid c-path, such that 𝜔𝑧 is a zebra for some 𝑧 ∈ ℕ. The algorithm goes as follows:
(i) If ℙ𝑛 = 0, 𝜔𝑛 is a zebra. Jump to step (vi). If not, there exists 𝑝 ≔ min{𝑖 ∈

{1, …, 𝑠} | ℙ𝑖
𝑛 > 0}. Note that, by definition, there are either no problems to the

left of the cell 𝑇𝑝 or only one negative problem in the cell 𝑝 − 1 (see Remark 3.2.10)
which, after executing all the steps below, would be resolved and, thus, restoring
the positiveness of all problems in one step.

(ii) ℙ𝑝
𝑛 > 0 means that there are too much selected vertices in the cell 𝑝. Thus, we pick

some 𝑟 ∈ Ω𝑝
𝑛 to be removed from 𝜔𝑛+1.

(iii) Chose some 𝑥 ∈ 𝑇𝑝−1 : {𝑥, 𝑟} ∉ 𝐸. By construction, there exists at least one such
𝑥 ∈ 𝑇𝑝−1.

(iv) Set 𝜔𝑛+1 ≔ {𝑥} ∪ 𝜔𝑛 \ ℰ𝑝−1
𝑛 ∪ (𝑙𝑘Γ(𝑥) ∩ ℰ𝑝−1

𝑛). Lemma 3.2.8 shows that, indeed,
(𝜔𝑛+1, 𝜔𝑛) ∈ ℳ(Γ).

(v) Jump to step (i).
(vi) Set 𝑧 ≔ 𝑛 and return.

Remark 3.2.7 : Note that if 𝑝 is even, then ℰ𝑝−1
𝑛 = Ω𝑝−2

𝑛 ∪ Ω𝑝
𝑛 since there is (by the

choice of 𝑝) no problem to the left of the cell 𝑝, which means that all the odd cells
(including 𝑝 − 1) are not subsets of 𝜔𝑛.

The same argument applies to 𝑝 is odd ⟹ ℰ𝑝−1
𝑛 = Ω𝑝−1

𝑛 ∪ Ω𝑝
𝑛.

Lemma 3.2.8 : ∀𝑛 ∈ ℕ : 𝜔𝑛+1 is a clique and (𝜔𝑛+1, 𝜔𝑛) ∈ ℳ(Γ) for 𝜔𝑛, 𝜔𝑛+1 from the
step (iv) of the algorithm described in Construction 3.2.6.

Proof : Firstly, we need to show that 𝜔𝑛+1 ∈ 𝒞(Γ). Let 𝑣, 𝑢 ∈ 𝜔𝑛+1 be an arbitrary pair
of vertices.

1. 𝑣 = 𝑥 ∧ 𝑢 ∈ 𝑙𝑘Γ(𝑥) ∩ ℰ𝑝−1
𝑛 ⟹ {𝑣, 𝑢} ∈ 𝐸 by Definition 1.2

2. 𝑣 = 𝑥 ∧ 𝑢 ∈ 𝜔𝑛 \ ℰ𝑝−1
𝑛 ⟹ ∃𝑗 ∈ 𝐼 : 𝑢 ∈ 𝑇𝑗 ∧ |(𝑝 − 1) − 𝑗| > 1 ⟹ {𝑣, 𝑢} ∈ 𝐸 by

Lemma 2.2.5

7

3. 𝑣 ∈ 𝑙𝑘Γ(𝑥) ∩ ℰ𝑝−1
𝑛 ∧ 𝜔𝑛 \ ℰ𝑝−1

𝑛 ⟹ 𝑣, 𝑢 ∈ 𝜔𝑛 ⟹ {𝑣, 𝑢} ∈ 𝐸 because 𝜔𝑛 ∈ 𝒞(Γ).

Now we show that

𝜔𝑛 \ 𝜔𝑛+1 ∩ (⋂
𝑣∈𝜔𝑛+1

𝑙𝑘Γ(𝑣)) = ∅. (12)

By construction, we have 𝜔𝑛 \ 𝜔𝑛+1 = ℰ𝑝−1
𝑛 \ 𝑙𝑘Γ(𝑥) = ℰ𝑝−1

𝑛 ∩ (𝑙𝑘Γ(𝑥))𝐶 . That implies
that (12) is equivalent to

ℰ𝑝−1
𝑛 ∩ (𝑙𝑘Γ(𝑥))𝐶 ∩ (⋂

𝑣∈𝜔𝑛+1

𝑙𝑘Γ(𝑣)) = ∅. (13)

Indeed, 𝑥 ∈ 𝜔𝑛+1 ⟹ (⋂𝑣∈𝜔𝑛+1
𝑙𝑘Γ(𝑣)) ⊂ 𝑙𝑘Γ(𝑥), thus (𝑙𝑘Γ(𝑥))𝐶 ∩ 𝑙𝑘Γ(𝑥) = ∅ implies

(12). ∎

Theorem 3.2.9 : The algorithm from Construction 3.2.6 always returns.

Proof : The only selections Ω𝑖
𝑛 that are changed in each iteration 𝑛 of the algorithm

are Ω𝑝−2
𝑛 , Ω𝑝−1

𝑛 and Ω𝑝
𝑛, whereby 𝑝 = min{𝑖 ∈ 𝐼 | ℙ𝑖

𝑛 > 0}. So, we can see how all the
possible changes of their cardinalities (which we denote by Δ|Ω𝑖

𝑛| ≔ |Ω𝑖
𝑛+1| − |Ω𝑖

𝑛|)
change, which affects ℙ𝑛:

𝑝 is odd:
Δ|Ω𝑝−2

𝑛 | Δ|Ω𝑝−1
𝑛 | Δ|Ω𝑝

𝑛| min{𝑖 ∈ 𝐼 | ℙ𝑖
𝑛+1 > 0} Δℙ𝑛

0 0 ≤ −1 ≥ 𝑝 ≤ −1
0 1 ≤ −1 𝑝 − 1 ≤ 0

𝑝 is even:
Δ|Ω𝑝−2

𝑛 | Δ|Ω𝑝−1
𝑛 | Δ|Ω𝑝

𝑛| min{𝑖 ∈ 𝐼 | ℙ𝑖
𝑛+1 > 0} Δℙ𝑛

0 1 ≤ −1 𝑝 − 1 ≤ 0
−1 1 ≤ −1 𝑝 − 1 ≤ −1

That shows that the problem does not increase, but because there is a finite amount
of cells, it is impossible to only move to the left. That means that the case described
in the first row of the odd table will always be reached decreasing ℙ𝑛. This means that
there exists a 𝑧 ∈ ℕ : ℙ𝑧 = 0. ∎

Remark 3.2.10 : Note that ℙ𝑖
1 < 0 ⟺ there is nothing selected in the 𝑖-th cell,

whereby 𝑖 is even. Thus, this is technically not a zebra up to the 𝑖-th cell anymore. ∀𝑖 ∈
𝐼0, ℙ𝑖

1 ≥ 0 because we chose 𝜔1 to include some zebra. By induction, ∀𝑖 ∈ 𝐼0, ℙ𝑖
𝑛 ≥ 0

holds for almost all 𝑛 except for one special case (the last row of the even table) when 𝑝
is even and, for {𝑙} = Ω𝑝−2

𝑛 , {𝑥, 𝑙} ∈ 𝐸 applies, which would lead to Ω𝑝−2
𝑛+1 = ∅ violating

the assumed zebra-ness of everything to the left of min{𝑖 ∈ 𝐼 | ℙ𝑖
𝑛+1 > 0}. But this

is automatically resolved by the fact that, in the (𝑛 + 1)th iteration, such a 𝑢 ∈ Ω𝑝−2
𝑛+1

will be found, that {𝑢, 𝑥} ∉ 𝐸, thus, solving the issue, because 𝜔𝑛+2 would be equal
to {𝑢} ∪ 𝜔𝑛+1 \ {𝑥} and making min{𝑖 ∈ 𝐼 | ℙ𝑖

𝑛+2 > 0} ≥ min{𝑖 ∈ 𝐼 | ℙ𝑖
𝑛+1 > 0} (say,

shifting the problem to the right) without increasing the problem size and repairing the
zebra-ness of everything to the left of min{𝑖 ∈ 𝐼 | ℙ𝑖

𝑛+2 > 0} in step 𝑛 + 2.

8

4. What’s next?
The next goal is to use this concrete definition of the algorithm to try to optimize it in
terms of the length of the c-path to understand the asymptotic behavior of the upper
bound with respect to |𝑉 | and |𝐸|.

9

	Introduction
	Joins
	Cliques
	Paths
	Goal

	Algorithms
	Finding a Join Decomposition
	Adjacency Table

	Construction of a Good C-path
	Zebras are good!
	Putting the Pieces Together

	What's next?

