
Analytic Summation

Dan Demidov

November 5, 2024

1 Introduction

1.1 Motivation

It has always been an important task to perform repetitive mathematical operations in a smart,
efficient manner. Although it is possible to denote them using a very short and elegant notation
(e.g.

∑n
k=0 ak or

∏
i∈I(x − i)), these are not very helpful at all when it comes to calculating the

exact value that is represented this way because of high computational complexity which can even
grow exponentially depending on the input.

One of the simplest examples of solving such a problem is the well-known formula for calculating
the sum of the first n terms of the arithmetic progression:

N∑
k=s

k =
(N − s+ 1)(s+N)

2
. (1)

The conventional derivation process, as well as the proof that’s usually conducted by induction, are
incredibly easy and straightforward and will not be covered in this paper. The goal of finding such
formulas is that we significantly reduce the amount of arithmetic operations to be performed. More
formally, it can be described as that we reduce the asymptotic time complexity of the algorithm.
Specifically, in the case of the arithmetic progression, we reduce the required time complexity from
O(n) to O(1) as the required amount of arithmetical operations does not depend on the input
variable n.

It is obvious that the
∑

notation’s time complexity is always O(n) (linear). But what if we

need to calculate something like
n∑

k=1

1
k? Is there some exact formula which reduces the asymptotic

time complexity, so that we do not need to sum up all of the terms ”by hand”? And is it possible
to generalize this for all possible sequences?

One other application of such closed formulas is the ability to extend their domain to all real
(and possibly complex) numbers to better understand them.

1.2 Sequences & Notation

Before we start, I would like to clarify some notation that will be used throughout this paper,
which you might already be familiar with, but which is nonetheless better to be defined to avoid
ambiguity.

Notation 1.2.1. (Sequence) We will use the following notation for describing a sequence

(αn)n or (αn)n∈N,

where αn (or any other mathematical expression in those braces) is the n-th element of this
sequence.

The notation (. . . )n means that the variable n is the ”input index”. It is important because,
in more complex scenarios, it is common for sequences to be generally declared with a bunch of
variables, and we use this (. . . )n notation to clarify which variable is the index-variable.

Notation 1.2.2. (The Set of Sequences)
FN

is the set of all sequences with the value range being some field F and the index variable from N.
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So it will be common to see something like this:

(αn)n ∈ RN

what ultimately means
∀n ∈ N : αn ∈ R.

Sometimes, if it is clear from the context, we will write

α ∈ FN, which is a shorthand for(αn)n ∈ FN

Definition 1.2.3. (Delta operator)

∆αn := αn+1 − αn (2)

∆2αn := ∆αn+1 −∆αn

. . .

∆k+1αn := ∆kαn+1 −∆kαn (3)

So, ∆ is an operator used to express the difference between the consecutive sequence members.
Note that:

(αn)n ∈ FN =⇒ (∆kαn)n ∈ FN,∀k ∈ N

where F is some field.
It also makes sense to define the following mapping:

Definition 1.2.4. (Delta mapping)

δ : FN −→ FN, (αn)n 7→ (∆αn)n, (4)

where for some k ∈ N
δk : FN −→ FN, (αn)n 7→ (∆kαn)n. (5)

2 Derivative of a Sequence

2.1 Motivation

All of us are (hopefully) familiar with the fundamental theorem of calculus which ultimately states
that finding the area under some curve is equivalent to finding an antiderivative and calculating
its values on the integration borders. More than that, integration itself is a kind of summation,
but in the limiting case. So this begs the quation if it is possible to find a similar approach to
calculating discrete partial sums? This will be discussed in more detail in the rest of the paper.

2.2 The Delta Notation

Let’s discuss and prove some properties of the delta notation. For this, let (αn)n, (βn)n ∈ FN.

Property 2.2.1. ∆k(∆lαn) = ∆k+lαn

Proof. ∆lαn = ∆(∆(. . .∆(αn) . . . )) where ∆ is applied l times. ∆k(∆lαn) = ∆(∆(. . .∆(∆lαn . . . )) =
∆(∆(. . .∆(αn) . . . )) where ∆ is applied k and then l times.

Property 2.2.2. ∆(λαn) = λ(∆αn) for ∀λ ∈ F

Proof. ∆(λαn) = λαn+1 − λαn = λ(αn+1 − αn) = λ(∆αn). □

Property 2.2.3. ∆(αn + βn) = ∆αn +∆βn

Proof. ∆(αn + βn) = αn+1 + βn+1 − (αn + βn) = (αn+1 −αn)+ (βn+1 − βn) = ∆αn +∆βn. □

In other words, 2.2.2 and 2.2.3 ⇐⇒ δ : FN −→ FN, (αn)n 7→ (∆αn)n is a linear map.

Property 2.2.4. ∆(
αn

βn
) =

∆(αn)βn − αn∆(βn)

βnβn+1

2



Proof. By definition ∆(
αn

βn
) =

αn+1

βn+1
−αn

βn
=

αn+1βn − αnβn+1

βnβn+1
=

(αn+1 − αn)βn + αnβn − αnβn+1

βnβn+1
=

∆(αn)βn − αn∆(βn)

βnβn+1
.

Property 2.2.5. ∃C ∈ F : ∀n ∈ N : αn = C ⇐⇒ ∆n(C) = 0.

Proof. Trivial.

The last property motivates the following notation:

Notation 2.2.6. For some field F and inductive set I we define

C(F, I) := {(αn)n ∈ FI |∆αn = 0 ∀n ∈ I}

as the set of all constant sequences in F over I

At this moment, you might start feeling some Deja Vu. Indeed, for der : Map(F, F ) −→
Map(F, F ), f 7→ f ′ it is also clear that der is a linear map, where Map(F1, F2) := {f |f : F1 −→ F2}.

More than that, the delta of a fraction (2.2.4) looks very similar to the well-known formula of
the derivative of a fraction. That’s is another similarity that makes the connections between the
two ideas even more clear and obvious.

Let’s define δk((αn)n) = (∆kαn)n as the k-order derivative of a sequence (αn)n.

2.3 The Table of Basic Deltas

Lets calculate the deltas of some basic sequences to be able to use them directly if we need.
First of all, the most important (and trivial) are polynomial and exponential sequences:

(αn)n ∈ KN (∆αn)n Derivation
(n)n 1 (n+ 1)− n = 1
(n2)n 2n+ 1 (n2 + 2n+ 1)− n2 = 2n+ 1
. . . . . . . . .

(nk)n
k−1∑
i=0

(
k
i

)
ni

k∑
i=0

(
k
i

)
ni − nk =

k−1∑
i=0

(
k
i

)
ni

(2n)n 2n 2n+1 − 2n = 2n

(3n)n 2 · 3n 3n+1 − 3n = 3n(3− 1)
. . . . . . . . .
(bn)n bn(b− 1) bn+1 − bn = bn(b− 1)

Table 1: Deltas of Basic Sequences

One more Deja Vu is to be noted: similar to the Euler’s constant e = lim
n→inf

(1 + 1
n )

n, such that

(ex)′ = ex, there exists such a number in the realm of sequences (namely 2) that, raised to the
n-th power, defines a sequence whose delta (a.k.a. discrete derivative) is also equal to itself. One
more similarity to traditional calculus! :)

2.4 Understanding the Deja Vu

When the antiderivative of a function is defined in the context of calculus, it is common to denote
it as the −1st derivative, and the function itself as the 0-order derivative. Let’s take a look at the
current definition of delta:

∆kαn := ∆k−1αn+1 −∆k−1αn, k ∈ N.

It’s nice to note that the expression ∆0αn actually makes sense: Due to the similarities between
the properties of exponents and the properties of ∆k (2.2.1), the superscript k in ∆k could be
allowed to take the value 0 as well because then ∆0αn = αn would make perfect sense with the
0-order sequence derivative being the sequence itself. That means we apply ”∆” 0 times which
equates to doing nothing.

But what if we would allow... negative values for k? Let’s see, what we would get if k is allowed
to take value from Z.
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Suppose we have a sequence (αn)n ∈ FN. Then for k = −1:

∆−1αn = ∆−2αn+1 −∆−2αn.

Okay. But not very helpful. For k = 0:

∆0αn = ∆−1αn+1 −∆−1αn.

And that’s where it gets interesting because ∆0αn = αn. So, we have derived that, if we
define k ∈ Z, and set k = 0, it turns out that the sequence denoted as the -1-order derivative is
a sequence whose derivative is the original sequence αn. Only one problem needs to be solved.
Namely, if we add some constant C ∈ F to ”the” -1-order derivative of a sequence (αn)n, we get
another sequence, the derivative of which is still the original sequence αn. Indeed, suppose there
is (An)n ∈ FN : ∆An = αn. Then, for all C ∈ F 2.2.5 implies ∆n(An + C) = ∆n(An) + ∆n(C) =
∆n(An) = αn. That shows that there is no unambiguous sequence (An)n which can be called the
-1-order derivative of (αn)n. This motivates the following definition of δk and ∆k for k ∈ Z, k < 0:

Definition 2.4.1.

δ−1 : FN −→ P(FN), (αn)n 7→ {(An)n ∈ FN : ∆An = αn}

And for k ∈ N \ {1} we define

δ−k : FN −→ P(FN), (αn)n 7→ {(An)n ∈ FN : ∆An ∈ δ−(k−1)(αn)},

as well as for all k ∈ N :

{∆−kαn} := δ−k(αn)
/
C(F, I) .

This definition assumes that δ
−1(αn)

/
C(F, I) contains only one element which we call ∆−1αn.

The following proposition shows that this is indeed true and associates a formal expression of a

form βn +C(F, I) ∈ δ−k(αn)
/
C(F, I) with a unique sequence (βn)n which we define as (βn)n =:

(∆−1αn)n.

Proposition 2.4.2. |δ−1(αn)
/
C(F, I) |= 1.

Proof. The idea is that there is an unambiguos anti-delta sequence up to a constant, and thus,
taking quotient results in a set that contains only one element (as we would simply cut out any
constant term). The formal proof is also pretty easy:

Suppose that |δ−1(αn)
/
C(F, I) |> 1, so ∃A′, B′ ∈ ∆−1(αn) such that

A′
n = An + C(F, I) as well as B′

n = Bn + C(F, I)

for some A,B ∈ δ−1(αn). We also have for all N ∈ N0 :

AN+1 −A1 =

N∑
k=1

αk =⇒ An =

n−1∑
k=1

αk +A1 =⇒ A′
n = An + C(F, I) =

n−1∑
k=1

αk +A1 + C(F, I) =

=

n−1∑
k=1

αk + C(F, I) = An −A1 + C(F, I) =⇒ A1 = 0.

By analogy, we get B1 = 0 =⇒ A1 = B1 =⇒ An = Bn.

So now, by writing ∆−1αn, we will refer to this unambiguous anti-delta sequence without a
constant term.
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2.5 The Fundamental Theorem (of Summation)

Now, we are ready to formulate the first theorem:

Theorem 2.5.1. ∀(αn)n ∈ FN, ∀a, b ∈ N : b ⩾ a

b∑
i=a

αn = ∆−1αb+1 −∆−1αa.

Proof. a, b ∈ N and b ⩾ a =⇒ ∃p ∈ N0 : b = a+ p. Proof using induction:

p = 0:
a+0∑
n=a

αn = αn = ∆−1αa+1 −∆−1αa✓

assume for some p ∈ N0:
a+p∑
n=a

αn = ∆−1αa+p+1 −∆−1αa ⇐⇒

⇐⇒
a+p+1∑
n=a

αn = αn+p+1 +∆−1αa+p+1 −∆−1αa

⇐⇒
a+p+1∑
n=a

αn = ∆−1αa+p+2 −∆−1αa+p+1 +∆−1αa+p+1 −∆−1αa

⇐⇒
a+p+1∑
n=a

αn = ∆−1αa+p+2 −∆−1αa =⇒
b∑

n=a
αn = ∆−1αb+1 −∆−1αa is correct

∀a, b ∈ N : b ⩾ a.

What does this theorem mean? It proves and implies, that

Corollary 2.5.2. If (for a given sequence (αn)n) there exists a sequence whose delta is (αn)n, it

is possible to reduce the time complexity of calculating
b∑

i=a

αn from O(n) down to O(1).

Proof. Theorem 1 =⇒
b∑

i=a

αn = ∆−1αb+1 − ∆−1αa. The expression ∆−1αb+1 − ∆−1αa has a

constant number of terms =⇒ the time complexity is constant.

2.6 Deriving First Formulas Using the Antiderivative-Sequence

Everything up to this point might seem obvious, but let’s take a look at some examples that
demonstrate how the theorem 2.5.1 can be applied to derive some interesting formulas (or well-
known formulas but derived in a new way).

Example 2.6.1. Consider b ∈ R, (αn)n ∈ RN with αn = bn ∀n ∈ N.

Let’s take a look at

∆αn = bn+1 − bn = bn(b− 1)

∆2αn = (b− 1)∆αn = bn(b− 1)2

. . .

∆kαn = (b− 1)∆k−1αn = bn(b− 1)k (6)

The latter formula (6) can easily be proven by induction for ∀k ∈ Z: It is obviously true for
k = 0 because ∆0αn = αn = bn(b− 1)0 = bn ✓

Assuming that (6) is true for some k ∈ Z we easily derive both (7) and (8):

∆k+1αn = ∆kαn+1 −∆kαn = bn+1(b− 1)k − bn(b− 1)k = bn(b− 1)k(b− 1) = bn(b− 1)k+1 (7)

∆k−1αn =
∆kαn

b− 1
= bn(b− 1)k−1. (8)

Thus, (6) =⇒ ∆−1αn = bn(b− 1)−1 =
bn

b− 1
. This and Theorem 2.5.1 imply
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n∑
i=0

bi =
bn+1

b− 1
− b0

b− 1
=

bn+1 − 1

b− 1
. (9)

Which is actually the well-known formula of the sum of the first n terms of a geometric pro-
gression derived using the idea of finding a sequence whose delta is the given sequence. More than
that, it also implies the formula for calculating the exact value of geometric series by taking

∞∑
i=0

bi = lim
n→∞

bn+1 − 1

b− 1
=

1

1− b
for |b|< 1.

Example 2.6.2. Now, let us derive the formula for calculating the sum of the first n terms of a
generalized arithmetic progression.

The first step is to consider (αn)n ∈ RN : αn := n. The goal now is to find a sequence
(An)n ∈ RN such that αn = ∆An. The first step is to try to guess what this sequence might look
like. The first obvious (and not very wrong) idea would be to try the sequence A′

n = n2, because,
as the Table 1 suggests, the degree of the polynomial is decreased by 1 when applying ∆. So, let
us see, what the discrete derivative (a.k.a. delta) of (A′

n)n would look like:

∆A′
n = ∆n2 = (n+ 1)2 − n2 = 2n+ 1.

That already looks promising, doesn’t it? We have just found the antiderivative-sequence of
α′
n = 2n + 1. But that is not quite what we need. We need it to be just n. The next step would

be to ”refine” A′
n = n2. Using the linearity of the delta operator, we try to (one-by-one) eliminate

the ”hindering” elements of the equation. First of all, lets try to get rid of that +1 term. Clearly,
we need to subtract some x from n2, such that ∆(n2 − x) = 2n. It is not hard to guess (with
assistance of the Table 1), that this mysterious x should be equal to n. Indeed, using the lineairy
of ∆ (2.2.3), we show that

∆(n2 − n) = ∆(n2)−∆(n) = (2n+ 1)− 1 = 2n.

The only thing left to refine is that constant factor 2. Again, due to the linearity of ∆ 2.2.2:

∆(
n2 − n

2
) =

1

2
(∆(n2)−∆(n)) =

1

2
((2n+ 1)− 1) = n.

And thus, we have established the exact formula for the antiderivative-sequence An =
n2 − n

2
=

n(n− 1)

2
, such that ∆An = αn. Now, we apply the FTS 2.5.1 to calculate the sum of the first k

terms of αn:
k∑

n=1

αn = Ak+1 −A1 =
n(n+ 1)

2
. (10)

All right! That’s a well known formula derived in a pretty unusual way! With a similar
approach, we can derive the formula for a general arithmetic progression mentioned at the beginning
(1).

Suppose we have s ∈ N (the first index to iterate from), N ∈ N (the last), and the sequence

(αn)n ∈ RN : αn = a + bn for some a, b ∈ R, n ∈ N. Then, to calculate
N∑

k=s

αn =
N∑

k=s

a+ bn, we

have to find some (An)n ∈ RN : αn = ∆(An). We could repeat ultimately the same steps we
performed to derive (10), but we could do it smarter utilizing the linearity of ∆. Finding the
antiderivative-sequence is the same as applying ∆−1 to some sequence. Since it is linear, we can
simplify the current problem:

An = ∆−1(αn) = ∆−1(a+ bn) = ∆−1(a) + ∆−1(bn) = a∆−1(1) + b∆−1(n).

And now, the only problem is to find the antiderivative-sequences to (1)n and (n)n which we
have already done! So, we can simply substitute:

a∆−1(1) + b∆−1(n) = an+ b
n(n− 1)

2
= An

And thus, we have found the antiderivative-sequence for a generalized arithmetic progression.
To calculate the sum, we just apply the FTS one more time:
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N∑
k=s

a+ bn = AN+1 −As = a(N + 1− s) +
b

2
(N(N + 1)− s(s− 1)) =

= a(N + 1− s) +
b

2
(N2 +N − s2 + s+Ns−Ns) =

= a(N + 1− s) +
b

2
(s(N − s+ 1) +N(N − s+ 1)) =

= a(N − s+ 1) + b
(N − s+ 1)(s+N)

2
.

And there we go! This is an even more generalized form of the formula mentioned at the
beginning (1). There, a = 0 and b = 1 was assumed.

2.7 Generalized Approach?

Thus, it has become clear that the process of finding the exact formula for calculating the sum of
consecutive terms of some sequence is almost the same as the process of finding the antiderivative
function in order to calculate a definite integral of some function. Similarly, one has to be very
patient... and, undoubtedly, very creative! Of course, some cheatsheets would be extremely useful
to simplify some routine tasks, e.g. taking the anti-delta (what a name!) of some sequence defined
in polynomial terms. The most obvious cheatsheet would be a some kind of an ”integration table”
with the antiderivatives of the trivial sequences, as well as a general formula for the anti-delta of
all the sequences of the form (nk)n for ∀k ∈ N. We already have all the required tools for that,
but the calculations would be pretty heavy and long. Before we start working on that formula, let
us introduce some new handy methods.

3 Summation by Parts

It is often the case that a sequence (that is not obvious to find an anti-delta to) can be represented
as a product of two other sequences, whose anti-deltas are already known. If this is the case when
you need to integrate a function, integration by parts can be used to simplify the problem. But
is there a similar approach if you are working with discrete sequences? And the answer is luckily
Yes, absolutely.

3.1 The Approach

Theorem 3.1.1. For all sequences (αn)n, (βn)n, (An)n, (Bn)n ∈ KN : ∆(An) = αn and ∆(Bn) =
βn,∀x ∈ N :

x∑
n=1

αnβn = Ax+1Bx+1 +A1B1 −AxBx+1 −Ax+1Bx +

x−1∑
n=1

αnBn+1 +

x−1∑
n=1

βnAn+1.

Proof. Scary, but correct.

(

x∑
n=1

αn)(

x∑
n=1

βn) =

x∑
n=1

αnβn +

x∑
n=1

x∑
k=n+1

(αnβk + αkβn) ⇐⇒

x∑
n=1

αnβn = (

x∑
n=1

αn)(

x∑
n=1

βn)−
x∑

n=1

x∑
k=n+1

(αnβk + αkβn) ⇐⇒

x∑
n=1

αnβn = (

x∑
n=1

αn)(

x∑
n=1

βn)−
x∑

n=1

αn

x∑
k=n+1

βk −
x∑

n=1

βn

x∑
k=n+1

αk,

which, by applying the FTS 2.5.1, is equivalent to

x∑
n=1

αnβn = (Ax+1 −A1)(Bx+1 −B1)−
x∑

n=1

αn(Bx+1 −Bn+1)−
x∑

n=1

βn(Ax+1 −An+1) ⇐⇒
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x∑
n=1

αnβn = (Ax+1 −A1)(Bx+1 −B1)−
x−1∑
n=1

αn(Bx+1 −Bn+1)−
x−1∑
n=1

βn(Ax+1 −An+1) ⇐⇒

x∑
n=1

αnβn = Ax+1Bx+1+A1B1−A1Bx+1−Ax+1B1−Bx+1

x−1∑
n=1

αn−Ax+1

x−1∑
n=1

βn+

x−1∑
n=1

αnBn+1+

x−1∑
n=1

βnAn+1.

By applying the FTS 2.5.1 one more time, we get

x∑
n=1

αnβn = Ax+1Bx+1+A1B1−A1Bx+1−Ax+1B1−Bx+1(Ax−A1)−Ax+1(Bx−B1)+

x−1∑
n=1

αnBn+1+

x−1∑
n=1

βnAn+1 ⇐⇒

x∑
n=1

αnβn = Ax+1Bx+1 +A1B1 −AxBx+1 −Ax+1Bx +

x−1∑
n=1

αnBn+1 +

x−1∑
n=1

βnAn+1.

At first glance, the formula may appear a bit confusing, but if α and β are creatively defined,
some really interesting results can be obtained. Now, let us look at some of the easiest applications
of the theorem 3.1.1.

Example 3.1.2. Find the formula for calculating
N∑

n=0
(n · 2n) for all N ∈ N in its closed form.

The sequence (n · 2n)n is not in the Table 1 of Basic Sequences, and there is also no obvious
formula for the anti-delta. But it can clearly be broken down into two basic sequences αn = n and

βn = 2n. We also know the anti-deltas An := ∆−1(αn) =
n(n− 1)

2
as well as Bn := ∆−1(βn) = 2n.

We can now apply 3.1.1:

N∑
n=1

(n·2n) = N(N + 1)

2
·2N+1−N(N − 1)

2
·2N+1−N(N + 1)

2
·2N+

N−1∑
n=1

(n·2n+1)+
1

2

N−1∑
n=1

(n(n+1)·2n).

Oh. That last term spoils everything and makes the task even more complicated. But, as
mentioned above, α and β have to be chosen creatively! Let us try to do it one more time.
We notice that the last sum increases the degree of the polynomial by one. So, why not to try to
choose such a sequence (αn)n, so that the last sum turns out to be the one we need to express in
terms of other parts of the equation, all of which will be ”simpler”. So we need An = n− 1. Thus,
αn = 1, and (βn)n remains unchanged.

N∑
n=1

(1 · 2n) = N · 2N+1 −N · 2N+1 + 2N+1 −N · 2N +

N−1∑
n=1

(1 · 2n+1) +

N−1∑
n=1

(n · 2n).

And voila! All the terms except for
∑N

n=1(n · 2n) are known and we have closed formulas for
them. Rearranging shows that

−(

N∑
n=1

(1 · 2n+1)−
N∑

n=1

(1 · 2n))−N · 2N+1 +N · 2N+1 +N · 2N =

N−1∑
n=1

(n · 2n)

⇐⇒
N−1∑
n=1

(n · 2n) = (2− 2N+1) +N · 2N ⇐⇒

⇐⇒
N∑

n=0

(n · 2n) = 2N+1(N − 1) + 2.

Let us check the correctness of the formula by taking its delta which should be (because of
2.5.1) equal to (n+ 1)2n+1:

∆(2n+1(n−1)+2) = (2n ·2n+1+2)−(2n+1(n−1)+2) = 2(n2n+1)−(n2n+1)+2n+1 = 2n+1(n+1).

Perfect. Let’s move on.
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3.2 Non-trivial applications of the Summation by Parts Rule

Now, we have the tools to define the way to derive the exact closed formula for calculating σk(x)
for all k ∈ N0 which we define as

Definition 3.2.1. (Polynomial Partial Sums) For k ∈ Z0 we define a map σk : C −→ C as an

extension of
N∑
i=1

nk for N ∈ N, such that

1. ∀z ∈ C : σk(z) is continuous,

2. ∀N ∈ Z ⊂ C : σk(N) =
N∑
i=1

nk for N ∈ N,

3. ∀z ∈ C : σ0(z) = z,

4. ∀z ∈ C : σk(z) = zk + σk(z − 1).

5. ∀z ∈ C : σk(z) is a polynomial.

Definition 3.2.2. For k ∈ N0 we define the sequence (Skn)n ∈ CN :

1. ∀k ∈ N0 : Sk1 = 0

2. ∀k ∈ N0 : ∆Skn = nk

Proposition 3.2.3. For (Skn)n (3.2.2), ∀k ∈ N0 : ∃(bki )i ∈ QN :

Skn =

k+1∑
i=1

ski n
i.

In other words, Skn is a polynomial of degree k + 1.

Proof. By definition, ∆Skn = nk =⇒ repeating steps as in the Example 2.6.2 results in a closed

formula for all N ∈ N for calculating
∑N

n=1 n
k = SkN+1 − Sk1 = SkN+1 which is a polynomial of

degree k + 1.

Corollary 3.2.4. ∀k ∈ N0 : σk(z) is a polynomial of degree k + 1.

Proof. By definition, σk(x) is a polynomial of degree ⩾ k + 1. Definition 3.2.1 Property 4 =⇒

∀x ∈ R : f(x) − f(x − 1) = k! = const for f(x) :=
dk

dxk
(σk(x)). That implies deg(f) = 1 =⇒

deg(σk(x)) = k + 1.

Lemma 3.2.5. ∀k ∈ N0 : σk(0) = 0.

Proof. Definition 3.2.1 Property 2 =⇒ σk(1) =
1∑

i=1

nk = 1. On the other hand, ∀k ∈ N0 : σk(1) =

1k + σk(0) (Definition 3.2.1 Property 4). That implies σk(0) = 0.

Proposition 3.2.6. For all k ∈ N0 : ∃!σk as in Definition 3.2.1.

Proof. Suppose ∃k ∈ N : ∃σk, σ
′
k as in Definition 3.2.1, such that σk ̸= σ′

k. Define f : C −→ C, z 7→
σk(z)− σ′

k(z). Property 5 implies that f(x) is a polynomial as well. 3.2.4 =⇒ deg(f) ⩽ k+ 1. It
is also true that ∀z ∈ N : f(z) = 0. Hence the degree of f is finite, the infinite number of zeroes
implies f = 0. That means that σk = σ′

k.

Theorem 3.2.7. (Recursive Polynomial Partial Sums) For all k ∈ N0, x ∈ C and (ski )i ∈ QN (as
in Proposition 3.2.3):

σk+1(x) =
1

1 + skk+1

(xσk(x)−
k∑

i=1

ski σi(x)).
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Proof. Let k ∈ N0. Consider sequences αn = 1, βn = nk and their anti-deltas An = n − 1, Bn =

Skn =
k+1∑
i=1

ski n
i. Proposition 3.2.3 implies that such ski exist (i = 1, . . . , k + 1). All the conditions

for 3.1.1 are met, so we can apply the Summation by Parts rule:

x∑
n=1

nk = xBx+1 − (x− 1)Bx+1 − xBx +

x−1∑
n=1

Bx+1 +

x−1∑
n=1

nk+1 ⇐⇒

⇐⇒ σk(x) = x(Bx+1 −Bx)− (x− 1)Bx+1 +

x∑
n=1

Bx +

x−1∑
n=1

nk+1 ⇐⇒

⇐⇒ σk(x) + (x− 1)σk(x) = xk+1 +

x∑
n=1

Bx +

x−1∑
n=1

nk+1 ⇐⇒

⇐⇒ xσk(x) =

x∑
n=1

k+1∑
i=1

ski n
i +

x∑
n=1

nk+1 ⇐⇒ xσk(x) =

k+1∑
i=1

ski

x∑
n=1

ni + σk+1(x) ⇐⇒

⇐⇒ σk+1(x) = xσk(x)−
k+1∑
i=1

ski σi(x) ⇐⇒ σk+1(x) = xσk(x)−
k∑

i=1

ski σi(x)− skk+1σk+1(x) ⇐⇒

⇐⇒ σk+1(x) =
1

1 + skk+1

(xσk(x)−
k∑

i=1

ski σi(x)).

4 The Cherry on Top

There is one more result I would really like to share. The final statement and its proof are fairly
simple, but the way it has originally been derived fascinates me and leaves a lot of open questions.
It will be the goal of the next paper to describe the tools, derive it as it had originally been
discovered, make some additional observations, and apply the tools in a more general case. But
less talking, more math:

Definition 4.0.1. We define delta-development of a sequence as the following family of maps
∀n ∈ I:

Gn : FI −→ F, (an)n 7→ an
an+1 − 2an + an−1

.

Definition 4.0.2. For an inductive subset I we define I− := {n ∈ I | n− 1 ∈ I}

Theorem 4.0.3. (The Cherry-on-Top Theorem) Let (an)n ∈ FI− . If there exists a number G ∈ F ,
such that, for all n ∈ I− : Gn = G, then an anti-delta sequence (An)n ∈ FI− of (an)n is explicitly
given as the following expression in closed form:

An = G(an − an−1),

and the sum of consecutive terms of an starting at some index s ∈ I− up to N ∈ I−(N ⩾ s) is
also explicitly given in closed form:

N∑
k=s

an = AN+1 −As = G(aN+1 − aN − as + as−1).

Proof. Suppose ∃G ∈ F , such that ∀n ∈ I− : Gn = G. Then define a sequence An := G(an−an−1).
We show that ∆An = an, which would prove the theorem (by FTS 2.5.1).

∀n ∈ I− : ∆An = G∆(an − an−1) = G(an+1 − 2an + an−1) =

= Gn(an+1 − 2an + an−1) =
an

an+1 − 2an + an−1
(an+1 − 2an + an−1) = an.
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And this turns out to be useful and powerful. Let’s look at some examples.

Example 4.0.4. Geometric progression. Once again.

Set an = bn for some b ∈ R, n ∈ N. Then for all n ∈ N :

Gn((an)n) =
bn

bn+1 − 2bn + bn−1
=

1

b− 2 + b−1
= const,

which implies that the cherry-on-top theorem (COTT) applies, and for N ∈ N we get

N∑
n=0

an =
1

b− 2 + b−1
(bN+1 − bN − b0 + b−1) =

bN (b− 1)− 1 + b−1

b− 1− (1− b−1)
=

(b− 1)(bN − b−1)

(b− 1)(1− b−1)

=
bN+1 − 1

b− 1
.

Alright, this works. But now, I want to show you another example, which is not so trivial.

Example 4.0.5. an := sin(n), n ∈ N. Then for all n ∈ N :

Gn((an)n) =
sin(n)

sin(n+ 1)− 2 sin(n) + sin(n− 1)
=

=
sin(n)

sin(n) cos(1) + sin(1) cos(n)− 2 sin(n) + sin(n) cos(1)− sin(1) cos(n)
=

=
1

2(cos(1)− 1)
= const.

=⇒
N∑

n=0

sin(n) =
sin(N + 1)− sin(N) + sin(−1)

2(cos(1)− 1)
.

4.1 Questions

The importance of Gn is already made clear. But, up to this point, only the case Gn(a) = const
has been made useful. The question is, whether it is possible to ”extract” more information
from the delta-development of a sequence and use it to find closed-form solutions to ∆−1an. The
motivation for delta-development, its original ”derivation”, as well as the questions about other
cases, are going to be the main focus of the next paper on this topic. If you have any ideas and/or
suggestions, I would really like to cooperate to uncover the mysteries of sequences and summation.
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